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Insilico toxicity prediction by using ProTox-II computational tools

Abstract 
Background Computational methods transform chemical safety assessment, offering efficient 
toxicity prediction. Swift and accurate analysis improves safety evaluations, benefiting drug 
development and regulatory compliance. 
Methods ProTox-II integrates computational techniques to predict chemical toxicity endpoints, 
leveraging machine learning, pharmacophores, and diverse experimental data. Models are 
meticulously validated for accuracy on independent datasets. 
Results ProTox-II's validated models ensure accurate toxicity prediction. Accessible via the 
web, it serves toxicologists, agencies, chemists, and stakeholders, providing comprehensive 
insights including toxicity radar charts, compound similarity, and detailed toxicity profiles with 
confidence scores. 
Conclusion ProTox-II is crucial for the pharmaceutical and regulatory sectors, enhancing 
safety evaluations and regulatory compliance. Leveraging computational techniques, it 
accelerates drug discovery, serving as an essential tool for mitigating toxicity risks and 
advancing chemical safety assessment.
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Introduction

Drug discovery greatly benefits from early evaluation of a 
chemical's toxic properties in addition to government regulatory 
agencies such as the European Medicines Agency (EMA), the 
Food and Drug Administration (FDA), and environmental health 
protection agencies like the Environmental Protection Agency 
(EPA) and European Environment Agency (EEA). Our exposure 
to these substances increases as the number of chemicals and 
the consequent combinations grow exponentially. By predicting 
the effects of chemicals on toxicity and doing so with less time, 
money, or animal testing required, in silico toxicity models 
seek to supplement existing in vitro techniques. These models 
include expertise from several disciplines, including biostatistics, 
toxicology, computer science, and systems biology.
    There are various benefits when comparing the ProTox-II 
website to current computational models. Information on targets 
for both chemicals and molecules is available on the ProTox 
website. The ProTox-II webserver is distinct in that it classifies 
its prediction method according to toxicity levels, which include 
oral toxicity, hepatotoxicity, cytotoxicity, immunotoxicity, 
and mutagenicity, as well as toxicological pathways (AOPs) 
and toxicity targets. This classification sheds light on putative 
molecular pathways underlying harmful reactions. To forecast 
a range of toxicity endpoints, the latest version of ProTox-II 
combines fragment propensities, pharmacophore-based analysis, 
most frequent features, molecular similarity, and machine learning 
models. ProTox-II is a publicly accessible online server for 
computational toxicity prediction that offers 33 models, making it 
possible to predict the greatest number of toxicological endpoints 
to date [1].
    Input Parameter: ProTox-II's interface provides simple navigation 
and straightforward operation. Potential toxicities linked to a 
chemical structure can be predicted by users by either entering the 
Simplified Molecular-Input Line-Entry System (SMILES) string 
for the compound or its name. Furthermore, users can sketch 
the chemical structure using the Chemdoodle chemical editor 
tool. Additionally, users can acquire chemical structures using 
compound names by utilizing the integrated PubChem search 
tool. Users can choose to use any of the available models or select 
additional models for specialized purposes such as prediction. The 
website automatically calculates projections for acute toxicity and 
toxicity targets if no further models are specified [2].
    Output Parameter: The output is characterized by the 
instantaneous generation of data regarding acute toxicity and 
toxicity target forecasts. The information displayed on the result 
page includes the expected weight-based median fatal dose 
(LD50) in mg/kg, the toxicity class, the prediction accuracy, and 
the average similarity. The three dangerous substances that are 
most comparable to each other in the dataset, as determined by 
known rodent oral toxicity values, are also shown. Details like 
target names, average fit, and similarity metrics between the 
input compound and the pharmacophore and known ligands for 
each target are given when data on expected toxicity targets is 
available. In addition, a table with each model's confidence score 
and prediction results is displayed if the user chooses to select 
further models. When it is not possible to provide prediction 
results immediately, users are given a website URL to view 
the results. Results include a toxicity radar image that shows 
the average confidence score of the input compound relative to 
active compounds in each model's training set (Figure 1). After 
computation, viewers can evaluate this plot by clicking the "Open 
Toxicity Radar Chart" link on the result page. Users can also view 
a comparable chart by clicking on the thumbnail located under 
the Toxicity Models Report. For additional insights, an example 
compound output and extensive details are provided on the ProTox-

II homepage [3].

Materials and methods 

The ProTox-II platform has five unique classification steps: (i) 
toxicological endpoints (four models); (ii) acute toxicity (an oral 
toxicity model with six distinct toxicity classes); (iii) (12 models) 
of toxicological pathways; and (iv) of toxicity targets (15 models). 
These five categories represent the divisions we made to the 
platform. We provide a brief overview of each model available 
on the ProTox-II server here. On the ProTox-II website, you can 
get detailed information under "model info" which includes 
performance scores, references, and the frequency distribution of 
the most common features for both active and inactive molecules 
in the training set [4, 5].

Acute toxicity

Oral toxicity: Acute toxicity models are developed based on 
the presence of dangerous fragments and chemical similarities 
between compounds with established detrimental effects.

Targets of toxicity

Toxicity targets are predicted using 15 different protein targets 
from in vitro safety panels linked to adverse drug responses.

Endocrine toxicology

One of the main reasons for sudden liver failure is hepatotoxicity, 
and drug-induced hepatotoxicity is a key reason why drugs are 
taken off the market. DILI, or drug-induced liver injury, can 
happen infrequently or over time. The prediction of DILI is still 
seen as a critical and safety concern by regulators, doctors, and 
pharmaceutical companies. Data utilized for the DILI prediction 
come from the NIH Liver Tox database and DILI rank. Utilizing 
an external validation approach with 86.00% balanced accuracy 
and a cross-validation accuracy of 82.00% 86.00% balanced 
accuracy on the external validation technique and balanced 
accuracy on cross-validation [6].

Resultant toxicity

ProTox-II is a webserver that predicts the toxicity of chemical 
compounds using machine learning algorithms. Users input 
chemical structures, and the platform analyzes them based on 
extensive datasets to assess key toxicity endpoints, including 
acute toxicity (LD50 values), organ toxicity (hepatotoxicity, 
nephrotoxicity, cardiotoxicity, and neurotoxicity), genotoxicity, 
carcinogenicity, endocrine disruption, and food allergy prediction. 
It combines these predictions into a comprehensive toxicity 
profile, detailing the toxic dose, affected organs, and health risks. 
Results are presented in a user-friendly format with visual aids, 
and detailed reports can be generated. Regular updates with new 
data and models maintain the platform's accuracy and reliability, 
continuously integrating new endpoints to enhance its capabilities, 
supporting safer drug development and chemical testing.

Carcinogenicity

Substances classified as carcinogens can either induce or increase 
the incidence of cancers. The Carcinogenic Potency Database 
(CPDB) and the CEBS database provide information for predicting 
carcinogenicity. The ProTox-II carcinogenicity prediction model 
performs well, with 81.24% balanced accuracy on cross-validation 
and 83.30% balanced accuracy on external validation. AUC-ROC 
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values for cross-validation and external validation are 0.85.

Mutagenicity

The capacity to result in genetic changes Mutagens are chemicals 
that cause abnormal genetic mutations, like changes to a cell's 
DNA. These changes can harm cells and cause certain illnesses, 
such as cancer. The CEBS database and the benchmark data 
set for the Adams test are the sources of ProTox-II mutagenicity 
prediction. The ProTox-II mutagenicity prediction model works 
well, with 84.00% balanced accuracy on cross-validation and 
85.00% balanced accuracy on external validation. AUC-ROC 
values for cross-validation and external validation are 0.90 and 0.91, 
respectively [7].

Cytotoxicity

Predicting a substance's potential to cause either desired or 
undesirable cell damage the latter being the case with tumor 
cells is essential for screening compounds. The ProTox-II 
cytotoxicity model was created using data extracted from the 
Chemical European Biology Laboratory (ChEMBL) database. 
In vitro toxicity tests on HepG2 cells, compounds with an IC50 
value of less than or equal to 10 μm are considered positively 
cytotoxic. The ProTox-II cytotoxicity prediction model performs 
well, with 83.60% balanced accuracy on external validation and 
85.00% balanced accuracy on cross-validation. AUC-ROC ratings 
for cross-validation and external validation are 0.89 and 0.90, 
respectively [8].

Immunotoxicity

The detrimental effects of xenobiotics on the immune system are 
referred to as immunotoxicity. The National Cancer Institute (NCI) 
in the United States provided the immune cell cytotoxicity data 

that were used in the immunotoxicity model. GI50 values, which 
are derived from the growth inhibition of the B-cell line RPMI-
8226, are used to classify compounds as dangerous if they are 
less than 10 μm. The accuracy of the ProTox-II immunotoxicity 
prediction model is 70.00% in external validation and 74.00% 
in cross-validation. AUC-ROC values for cross-validation and 
external validation are 0.76 and 0.74, respectively.

Toxicological pathways

Toxicology in the 21st Century (Tox21), a US toxicology initiative, 
was introduced in 2008. It provides a high-throughput test library 
of 10,000 chemical data that has been evaluated against a panel 
of 12 distinct biological target-based pathways, including the two 
primary types of adverse outcome pathways (AOPs), the nuclear 
receptor pathway and the stress response pathway.
    ProTox-II makes predictions about which chemicals are active in 
toxicological pathways based on the Tox21 dataset [9].

Nuclear receptor signaling pathways

There are seven target-pathway-based models under nuclear 
receptor signaling pathways:  aryl hydrogen receptor (AhR), 
androgen receptor (AR), androgen receptor ligand binding domain 
(AR-LBD), aromatase, estrogen receptor alpha (ER), estrogen 
receptor ligand binding domain (ER-LBD), and peroxisome 
proliferator-activated receptor gamma (PPAR-Gamma). For both 
external validation and cross-validation, the models39; AUC-ROC 
values fall between 0.75 and 0.90, and their balanced accuracy 
exceeds 80%.
    Five target-pathway-based models under stress response 
pathways represent the routes involved in the stress response: 
The phosphoprotein tumor suppressor (p53), heat shock factor 
response element (HSE), nuclear factor (erythroid-derived 2)-
like 2/antioxidant responsive element (ARE), Among the proteins 

Figure 1. ProTox-II classification scheme.
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involved in this process are ATPase family AAA domain-
containing protein 5 (ATAD5) and mitochondrial membrane 
potential (MMP). Each model has an AUC-ROC value between 
0.80 and 0.90 for both cross-validation and external validation, and 
an accuracy balance exceeds 80%.

Results 

a) Prediction results: An ensemble technique using RF and Support 
Vector Machine (SVM) classifiers is used to construct the Tox21-
based toxicological pathway prediction. The kernel function of the 
SVM algorithm is the radial basis function (RBF). The published 
paper states that the Bernoulli-Naive Bayes algorithm serves as the 
foundation for the immunotoxicity prediction model.
    Here, two different fingerprints are used: the 166-bit MACCS 
molecular fingerprints and the Morgan circular fingerprinting 
(2048 bits) (http://www.rdkit.org/). These two fingerprints are the 
most effective at predicting chemical activity, according to 11 and 
24.
    A selective oversampling of the minority class is also included 
in the model-building process. The fragmentation methods of 
ROTBONDS and RECAP are used to separate the active (positive) 
and inactive (negative) data for each of are re-separated for 
every prediction endpoint using the fragmentation methods of 
ROTBONDS and RECAP. The propensity score (PS) is computed 
for each uniquely occurring fragment in both sets. Only molecules 
with the highest propensity scores for conserved fragments for the 
active class are oversampled and included in the model-building 
process. For each cross-validation fold, the ratio of active to 
inactive compounds was maintained constant using the fragment-
based similarities between the compounds [10].
    b) Validation Results: Every new model is validated using 

fragment-based Cluster 10-fold cross-validation. Ten sets of 
data were created using a fragment similarity-based sampling 
strategy, nine of which were used to train the model and the tenth 
to validate it while keeping constant ratios of active to inactive. In 
addition, outside datasets that weren't part of the training set were 
used to externally validate the models. The following performance 
measures are used to assess the models: 1/2[true positive/ (true 
positive + false negative) + true negative/ (true negative + false 
positive)] is the definition of balanced accuracy. It is also equal to 
(sensitivity + specificity)/2.
    The area under the curve (AUC) of a receiver operating 
characteristic (ROC) curve shows the sensitivity against specificity 
at different thresholds (Table 1). The AUC-ROC has shown to be 
a helpful statistic for binary classifiers trained on unbalanced data 
sets (containing minority and majority classes). The kappa index is 
used to evaluate binary classification models for quality. The range 
of the kappa index is 0 (less significant) to 1 (perfect) [11].

Discussion

This in-depth analysis offers a thorough rundown of ProTox-II, a 
well-known computational platform for predicting and classifying 
chemical toxicity. To reduce time, expense, and animal testing, the 
introduction emphasized the significance of early chemical hazard 
assessment in drug discovery and the use of in silico models to 
forecast chemical effects.
    ProTox-II is an easy-to-use platform that uses a variety of inputs 
to forecast chemical risk. Its output gives quick information on 
toxicity, including levels, approximate fatal doses, and comparable 
substances. The website provides access to comprehensive model 
information. The procedures, which are fully described on the 
ProTox-II website, consist of five steps that cover various toxicity 

Table 1. Cross-validation results for newly included models in the ProTox-II platform in terms of balanced accuracy, 
AUC–ROC, kappa value, sensitivity, and specificity.

Items Models Balanced 
accuracy (%) AUC–ROC Kappa Sensitivity (%) Specificity (%)

Organ toxicity DILI 82.00 0.86 0.69 75.00 89.00

Toxicity 
endpoints

Mutagenicity 84.00 0.90 0.70 83.00 85.00

Carcinogenicity 81.24 0.85 0.69 80.00 81.00

Cytotoxicity 85.00 0.89 0.65 92.00 78.00

Immunotoxicity 75.00 0.76 0.35 69.50 79.50

Toxicological 
pathways

nr-ahr 91.00 0.89 0.80 87.00 94.00

nr-ar 93.00 0.84 0.75 89.00 97.00

nr-ar-lbd 89.00 0.87 0.76 79.50 97.00

nr-aromatase 92.00 0.86 0.79 78.00 96.00

nr-er 90.00 0.75 0.71 85.00 95.00

nr-er-lbd 89.00 0.85 0.73 83.00 95.00

nr-ppar-gamma 92.00 0.81 0.71 86.00 97.00

sr-are 91.00 0.84 0.69 85.00 97.00
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concerns.
    ProTox-II's future goals include improving its methods through 
the use of newly developed knowledge networks and genetic 
variances among people, guaranteeing accuracy in identifying 
harmful effects. Periodic updates, scheduled every three months, 
will include new information and endpoints, such as forecasts for 
genotoxicity, nephrotoxicity, neurotoxicity, cardiotoxicity, and 
food allergies, improving its usefulness for drug development and 
regulatory decision-making.  
    Continued advancements in ProTox-II aim to revolutionize 
toxicological evaluations further. By integrating newly developed 
knowledge networks and accounting for genetic variances among 
individuals, ProTox-II ensures greater accuracy in identifying 
potential harmful effects. Scheduled updates, occurring every three 
months, will incorporate additional information and endpoints, 
such as genotoxicity, nephrotoxicity, neurotoxicity, cardiotoxicity, 
and food allergies. These expansions will augment ProTox-II's 
efficacy in aiding regulatory decision-making and facilitating 
drug development processes. With its commitment to ongoing 
improvement and adaptation to emerging scientific insights, 
ProTox-II remains at the forefront of computational toxicology, 
poised to meet the evolving needs of the pharmaceutical industry 
and regulatory agencies.
    To sum up, ProTox-II is a crucial computational tool that has the 
potential to revolutionize toxicological evaluations by providing 
thorough predictions over a wide variety of toxicity endpoints. 
It is also constantly changing to take into account new data and 
scientific discoveries [12, 13].

Summary

Introducing ProTox-II, a comprehensive platform integrating 
mach ine lea r n ing models  for  17 tox icit y endpoint s , 
pharmacophore-based models for 15 endpoints, and fragment 
propensities. ProTox-II offers 33 models, including oral toxicity, 
hepatotoxicity, and toxicological pathways, setting it apart. Each 
model demonstrates varying performance, facilitating informed 
toxicity analysis. ProTox-II aims to enhance drug discovery and 
regulatory risk assessments, potentially revolutionizing decision-
making processes in the regulatory environment.

Prospect

ProTox-II intends to develop its techniques to attain a more 
accurate characterization of clinically meaningful adverse 
effects. This development will be based on previously published 
information and pertinent networks of negative outcome pathways 
and chemical target side effects. The platform will gradually 
consider individual genetic variants and species variances as the 
next stage of evolution. Planned quarterly updates are intended 
to keep the ProTox-II platform up to par. Furthermore, any fresh 
information will be included in the current models, adding 
new endpoints like genotoxicity, nephrotoxicity, neurotoxicity, 
cardiotoxicity, and the ability to predict food allergies [14, 15].
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